Premium
A dynamic unreliability assessment and optimal maintenance strategies for multistate weighted k ‐out‐of‐ n :F systems
Author(s) -
Khorshidi Hadi Akbarzade,
Gunawan Indra,
Ibrahim Yousef
Publication year - 2016
Publication title -
applied stochastic models in business and industry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.413
H-Index - 40
eISSN - 1526-4025
pISSN - 1524-1904
DOI - 10.1002/asmb.2173
Subject(s) - computer science , dynamic programming , mathematical optimization , matlab , order (exchange) , genetic algorithm , reliability engineering , operations research , algorithm , mathematics , engineering , finance , economics , operating system
In this paper, a dynamic evaluation of the multistate weighted k‐out‐of‐n:F system is presented in an unreliability viewpoint. The expected failure cost of components is used as an unreliability index. Using failure cost provides an opportunity to employ financial concepts in system unreliability estimation. Hence, system unreliability and system cost can be compared easily in order to making decision. The components' probabilities are computed over time to model the dynamic behavior of the system. The whole system has been assessed by recursive algorithm approach. As a result, a bi‐objective optimization model can be developed to find optimal decisions on maintenance strategies. Finally, the application of the proposed model is investigated via a transportation system case. Matlab programming is developed for the case, and genetic algorithm is used to solve the optimization model. Copyright © 2016 John Wiley & Sons, Ltd.