z-logo
Premium
Multi‐sensor track‐to‐track fusion via linear minimum variance sense estimators
Author(s) -
Fong LiWei
Publication year - 2008
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.34
Subject(s) - estimator , sensor fusion , computer science , cartesian coordinate system , fusion , kalman filter , algorithm , covariance , range (aeronautics) , computer vision , artificial intelligence , engineering , mathematics , statistics , linguistics , philosophy , geometry , aerospace engineering
An integrated approach that consists of sensor‐based filtering algorithms, local processors, and a global processor is employed to describe the distributed fusion problem when several sensors execute surveillance over a certain area. For the sensor tracking systems, each filtering algorithm utilized in the reference Cartesian coordinate system is presented for target tracking, with the radar measuring range, bearing, and elevation angle in the spherical coordinate system (SCS). For the local processors, each track‐to‐track fusion algorithm is used to merge two tracks representing the same target. The number of 2‐combinations of a set with N distinct sensors is considered for central track fusion. For the global processor, the data fusion algorithms, simplified maximum likelihood (SML) estimator and covariance matching method (CMM), based on linear minimum variance (LMV) estimation fusion theory, are developed for use in a centralized track‐to‐track fusion situation. The resulting global fusers can be implemented in a parallel structure to facilitate estimation fusion calculation. Simulation results show that the proposed SML estimator has a more robust capability of improving tracking accuracy than the CMM and the LMV estimators. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here