Premium
State estimation for stochastic time‐varying multisensor systems with multiplicative noises: Centralized and decentralized data fusion
Author(s) -
Rahmani Mehdi,
Abolhasani Mahdi
Publication year - 2019
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.2103
Subject(s) - estimator , sensor fusion , covariance , multiplicative function , state (computer science) , kalman filter , mathematical optimization , computer science , control theory (sociology) , least squares function approximation , optimal estimation , mathematics , algorithm , artificial intelligence , statistics , machine learning , control (management) , mathematical analysis
In this paper, the state estimation problems, including filtering and one‐step prediction, are solved for uncertain stochastic time‐varying multisensor systems by using centralized and decentralized data fusion methods. Uncertainties are considered in all parts of the state space model as multiplicative noises. For the first time, both centralized and decentralized estimators are designed based on the regularized least‐squares method. To design the proposed centralized fusion estimator, observation equations are first rewritten as a stacked observation. Then, an optimal estimator is obtained from a regularized least‐squares problem. In addition, for decentralized data fusion, first, optimal local estimators are designed, and then fusion rule is achieved by solving a least‐squares problem. Two recursive equations are also obtained to compute the unknown covariance matrices of the filtering and prediction errors. Finally, a three‐sensor target‐tracking system is employed to demonstrate the effectiveness and performance of the proposed estimation approaches.