z-logo
Premium
Output feedback control of a three‐phase four‐wire unified power quality conditioner
Author(s) -
Benazza Bouchaib,
Ouadi Hamid,
Giri Fouad
Publication year - 2020
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.2034
Subject(s) - control theory (sociology) , harmonics , engineering , voltage , controller (irrigation) , capacitor , three phase , computer science , electrical engineering , agronomy , control (management) , artificial intelligence , biology
The increasing penetration of power electronics in electrical equipment entails a significant impact on the deterioration of power supply quality. In this paper, the problem of power quality is addressed for distorted three‐phase four‐wire power grids supplying non‐linear unbalanced loads. A unified power quality conditioner (UPQC) is considered to ensure satisfactory electrical energy quality. To this end, a UPQC controller is designed to meet four control objectives: i) compensation of the harmonics and the reactive load currents; ii) compensation for the harmonic voltages at the point of common coupling (PCC); iii) cancelation of the neutral current ; iv) and regulation of the inverter DC voltage . The control design relies on the UPQC nonlinear model that accounts for the electrical grid line impedance. Unlike previous works, the proposed controller features an output‐feedback nature as it combines a nonlinear regulator, designed with a sliding‐mode technique, and a state observer designed using a Lyapunov stability based technique. The latter provides the former with online estimates of the series filter AC voltages, which are not assumed to be accessible to measurements. The closed loop error system is analyzed using the average stability approach. It turns out that all (tracking and estimation) errors are asymptotically vanishing, except for the DC bus voltage tracking error, which is periodic in steady‐state with an amplitude depending on the (DC bus) capacitor, the larger the capacitor the smaller the steady‐state DC voltage tracking error level . This theoretical result is confirmed by simulations involving wide range variations of the load current.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here