Premium
Teleoperation Control of a Position‐Based Impedance Force Controlled Mobile Robot by Neural Network Learning: Experimental Studies
Author(s) -
Choi Hojin,
Jung Seul
Publication year - 2020
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.1909
Subject(s) - teleoperation , haptic technology , control theory (sociology) , robot , impedance control , mobile robot , contact force , artificial neural network , control engineering , transparency (behavior) , computer science , simulation , engineering , nonlinear system , control (management) , artificial intelligence , physics , computer security , quantum mechanics
Effective haptic performance in teleoperation control systems can be achieved by solving two major problems: the time‐delay in communication channels and the transparency of force control. The time‐delay in communication channels causes poor performance and even instability in a system. The transparency of force feedback is important for an operator to improve the performance of a given task. This article suggests a possible solution for these two problems through the implementation of a teleoperation control system between the master haptic device and the slave mobile robot. Regulation of the contact force in the slave mobile robot is achieved by introducing a position‐based impedance force control scheme in the slave robot. The time‐delay problem is addressed by forming a Smith predictor configuration in the teleoperation control environment. The configuration of the Smith predictor structure takes the time‐delay term out of the characteristic equation in order to make the system stable when the system model is given a priori . Since the Smith predictor is formulated from exact linear modeling, a neural network is employed to identify and model the slave robot system as a nonlinear model estimator. Simulation studies of several control schemes are performed. Experimental studies are conducted to verify the performance of the proposed control scheme by regulating the contact force of a mobile robot through the master haptic device.