Premium
A deadlock prevention approach for a class of timed Petri nets using elementary siphons
Author(s) -
Guo Jinwei,
Li Zhiwu
Publication year - 2010
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.189
Subject(s) - petri net , liveness , deadlock prevention algorithms , supervisor , siphon (mollusc) , deadlock , computer science , invariant (physics) , control (management) , distributed computing , mathematics , artificial intelligence , ecology , biology , political science , law , mathematical physics
Abstract To solve the problem of deadlock prevention for timed Petri nets, an effective deadlock prevention policy based on elementary siphons is proposed in this paper. Without enumerating reachable markings, deadlock prevention is achieved by adding monitors for elementary siphons, increasing control depth variables when necessary, and removing implicit, liveness‐restricted and redundant control places. The final supervisor is live. First, a timed Petri net is stretched into a stretched Petri net (SPN). Unchanging the system performance, each transition in the SPN has a unit delay time. Then the siphon‐control‐based approach is applied. Monitors computed according to the marking constraints are added to the SPN model to ensure all strict minimal siphons in the net invariant‐controlled. A liveness‐enforcing supervisor with simple structure can be obtained by reverting the SPN into a TdPN. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society