Premium
Adaptive fault‐tolerant control for a nonlinear flexible aircraft wing system
Author(s) -
Zhang Yuanyuan,
Liu Jinkun,
He Wei
Publication year - 2019
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.1821
Subject(s) - control theory (sociology) , fault tolerance , actuator , controller (irrigation) , adaptive control , nonlinear system , control engineering , fault (geology) , lyapunov function , distributed parameter system , engineering , control system , computer science , control (management) , distributed computing , artificial intelligence , physics , electrical engineering , quantum mechanics , seismology , geology , agronomy , biology
Fault‐tolerant control problems have been extensively studied in all kinds of control systems. However, there is little work on fault‐tolerant control for distributed parameter systems. In this paper, a novel adaptive fault‐tolerant boundary control scheme is proposed for a nonlinear flexible aircraft wing system against actuator faults. The whole system is regarded as a distributed parameter system, and the dynamic model of the flexible wing system is described by a set of partial differential equations (PDEs) and ordinary differential equations (ODEs). The proposed controller is designed by using the Lyapunov's direct method and adaptive control strategies. Based on the online estimation of actuator faults, the adaptive controller parameters can update automatically to compensate the actuator faults of the system. Besides, a fault‐tolerant controller is also developed for this system in the presence of external disturbances. Differing from existing works about adaptive fault‐tolerant control, the adaptive controller presented in this paper is designed for a distributed parameter system. Finally, numerical simulations are carried out to illustrate the effectiveness of the proposed control scheme.