z-logo
Premium
Design and Implementation of a Hierarchical‐Clustering CMAC PID Controller
Author(s) -
Liao Yuntao,
Koiwai Kazushige,
Yamamoto Toru
Publication year - 2019
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.1806
Subject(s) - cerebellar model articulation controller , pid controller , generalization , control theory (sociology) , computer science , controller (irrigation) , cluster analysis , table (database) , nonlinear system , control engineering , control (management) , artificial intelligence , engineering , mathematics , data mining , temperature control , agronomy , biology , mathematical analysis , physics , quantum mechanics
In industrial control processes, proportional‐integral‐derivative (PID) control algorithm is widely employed. Therefore, it is meaningful to design advanced PID controllers, especially for nonlinear control objects. One of the advanced PID controllers is a cerebellar model articulation controller (CMAC) PID controller. In this controller, the PID control parameters are calculated and tuned. The CMAC achieves a higher accuracy by increasing the number of labels of each weight table; this requires a larger memory, and the generalization ability of the controller decreases. On the other hand, if the CMAC requires less memory, the generalization ability increases and accuracy decreases. Hence, in this paper, a novel CMAC in which the accuracy is compatible with the generalization ability is proposed in this paper. In the proposed CMAC, the number of labels of each weight table can be decided by using a hierarchical clustering technology. Moreover, the efficiency of the memory allocation is improved. The effectiveness of the proposed method is verified by experiments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here