Premium
Adaptive Backstepping Control of Six‐Phase PMSM Using Functional Link Radial Basis Function Network Uncertainty Observer
Author(s) -
Lin FaaJeng,
Chen ShihGang,
Sun IFan
Publication year - 2017
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.1521
Subject(s) - control theory (sociology) , backstepping , robustness (evolution) , servo drive , control engineering , servomechanism , lyapunov function , observer (physics) , robust control , computer science , engineering , servomotor , control system , adaptive control , nonlinear system , control (management) , artificial intelligence , biochemistry , chemistry , physics , electrical engineering , quantum mechanics , gene
An adaptive backstepping control (ABSC) using a functional link radial basis function network (FLRBFN) uncertainty observer is proposed in this study to construct a high‐performance six‐phase permanent magnet synchronous motor (PMSM) position servo drive system. The dynamic model of a field‐oriented six‐phase PMSM position servo drive is described first. Then, a backstepping control (BSC) system is designed for the tracking of the position reference. Since the lumped uncertainty of the six‐phase PMSM position servo drive system is difficult to obtain in advance, it is very difficult to design an effective BSC for practical applications. Therefore, an ABSC system is designed using an adaptive law to estimate the required lumped uncertainty in the BSC system. To further increase the robustness of the six‐phase PMSM position servo drive, an FLRBFN uncertainty observer is proposed to estimate the lumped uncertainty of the position servo drive. In addition, an online learning algorithm is derived using Lyapunov stability theorem to learn the parameters of the FLRBFN online. Finally, the proposed position control system is implemented in a 32‐bit floating‐point DSP, TMS320F28335. The effectiveness and robustness of the proposed intelligent ABSC system are verified by some experimental results.