Premium
Performance Improvement of Fuel Cells Using Perturbation‐Based Extremum Seeking and Model Reference Adaptive Control
Author(s) -
Dadkhah Tehrani Reza,
Shabani Faridoon
Publication year - 2017
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.1519
Subject(s) - control theory (sociology) , duty cycle , pid controller , maximum power point tracking , nonlinear system , boost converter , computer science , perturbation (astronomy) , adaptive control , control engineering , engineering , voltage , control (management) , temperature control , physics , quantum mechanics , artificial intelligence , inverter , electrical engineering
Nowadays, fuel cells (FCs) are considered suitable alternative sources for electrical energy applications. One major challenge encountered in FCs is relevant to the performance of the maximum power point tracking (MPPT) under FC parameter changes and load variations. This challenge is due to the nonlinearity and time‐varying dynamics of FC systems. In this paper, the MPPT is studied in a system composed of a FC and a DC‐DC converter. To improve the performance of the MPPT, application of perturbation‐based extremum seeking (PES) and model reference adaptive control (MRAC) is proposed. This control scheme can efficiently handle the uncertainties in the FC as well as the load, through two control levels. The first level is PES utilized to adjust the duty cycle of the DC‐DC converter; and the second level is MRAC employed to achieve the desired dynamic response. Using the proposed control strategy, design and analysis of the control levels can be realized independently, which results in easy implementation. This is achieved due to considerable differences between the time constants of the control levels. The simulation results are utilized to confirm the effectiveness of the proposed scheme in response to the variations of FC parameters and load. Also, comparative studies with a combination of PES and PID controller are provided in the simulation.