Premium
Bounded‐Input Control of the Quadrotor Unmanned Aerial Vehicle: A Vision‐Based Approach
Author(s) -
Asl Hamed Jabbari,
Yoon Jungwon
Publication year - 2017
Publication title -
asian journal of control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.769
H-Index - 53
eISSN - 1934-6093
pISSN - 1561-8625
DOI - 10.1002/asjc.1420
Subject(s) - control theory (sociology) , bounded function , controller (irrigation) , angular velocity , optical flow , computer science , image plane , computer vision , visual servoing , artificial intelligence , image (mathematics) , mathematics , control (management) , physics , mathematical analysis , biology , quantum mechanics , agronomy
In this paper, a bounded‐input controller is designed for the quadrotor vertical take‐off and landing unmanned aerial vehicle (UAV). Visual information is used to localize the aircraft with respect to its environment and an image‐based visual servo scheme is developed to navigate the motion of it. The visual features are selected from perspective image moments and projected on a rotated image plane, which simplifies the controller design. The flow of the features is used as the linear velocity information, and the controller assumes angular velocity and attitude information available for feedback. To design the controller, the dynamics of the quadrotor are decoupled into two parts: translational dynamics and rotational dynamics. First visual data are used to design a bounded‐input controller for the translational dynamics, and then a saturated controller is designed for the rotational dynamics. The boundedness of the controller increases the chance of keeping the visual features in the field of view of the camera. Furthermore, the controllers also cope with the unknown depth of the image, and the external disturbances. The complete stability analysis of the overall system is presented to show that all states are bounded and the error signals converge to zero asymptotically. Simulation examples are provided in both nominal and perturbed conditions which show the effectiveness of the proposed theoretical results.