z-logo
Premium
Catalytic Enantioselective Radical Transformations Enabled by Visible Light
Author(s) -
Saha Debajyoti
Publication year - 2020
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.202000525
Subject(s) - enantioselective synthesis , photoredox catalysis , photocatalysis , catalysis , organocatalysis , chemistry , combinatorial chemistry , visible spectrum , organic synthesis , photochemistry , nanotechnology , organic chemistry , materials science , optoelectronics
Visible light has been recognized as an economical and environmentally benign source of energy that enables chemoselective molecular activation of chemical reactions and hence reveal a new horizon for the design and discovery of novel chemical transformations. On the other hand, asymmetric catalysis represents an economic method to satisfy the increasing need for enantioenriched compounds in the chemical and pharmaceutical industries. Therefore, combining visible light photocatalysis with asymmetric catalysis creates a wider range of opportunities for the development of mechanistically unique reaction schemes. However, there arise two main problems like undesirable photochemical background reactions and difficulties in controlling the stereochemistry with highly reactive photochemical intermediates which can pose a serious challenge to the development of asymmetric visible light photocatalysis. In recent years, several methods have been developed to overcome these challenges. This review summarizes the recent advances in visible light‐induced enantioselective reactions. We divide our discussion into four categories: Asymmetric photoredox organocatalysis, asymmetric transition metal photoredox catalysis, asymmetric photoredox Lewis acid catalysis and asymmetric photoinduced energy transfer catalysis. Special emphasis has been given to different catalytic activation modes that enable the construction of challenging carbon‐carbon and carbon‐heteroatom bond in an enantioselective fashion. A brief analysis of substrate scope and limitation as well as reaction mechanism of these reactions has been included.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here