Premium
Nucleic Acid Catalysis under Potential Prebiotic Conditions
Author(s) -
Le Vay Kristian,
Salibi Elia,
Song Emilie Y.,
Mutschler Hannes
Publication year - 2020
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201901205
Subject(s) - nucleic acid , deoxyribozyme , abiogenesis , ribozyme , catalysis , chemistry , prebiotic , extant taxon , biochemistry , dna , rna , biology , astrobiology , evolutionary biology , gene
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5‐4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non‐physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.