z-logo
Premium
Water‐soluble Glucosamine‐coated AIE‐Active Fluorescent Organic Nanoparticles: Design, Synthesis and Assembly for Specific Detection of Heparin Based on Carbohydrate–Carbohydrate Interactions
Author(s) -
Ji Yanming,
Liu Guangjian,
Li Cuiyun,
Liu Yichen,
Hou Min,
Xing Guowen
Publication year - 2019
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201901153
Subject(s) - heparin , carbohydrate , fluorescence , chemistry , water soluble , glucosamine , nanoparticle , nanotechnology , combinatorial chemistry , biochemistry , organic chemistry , materials science , physics , quantum mechanics
Two water‐soluble carbohydrate‐coated AIE‐activate fluorescent organic nanoparticles TPE3G and TPE4G were designed and synthesized for the detection of heparin. Different from the reported strategy, we not only utilized the general detection mechanism of electrostatic interactions, but also introduced the concept of carbohydrate‐carbohydrate interactions (CCIs) to enrich the detection mechanism of heparin. TPE3G can serve as an efficient “turn‐on” probe with higher selectivity towards heparin than TPE4G . TEM studies revealed that the micro‐aggregated TPE3G was encapsulated with the heparin chain to form a complex self‐assemblied composite and emits strong fluorescence. It is believed that the results illustrated in this study provide a novel strategy based on CCls to design water‐soluble and more efficient bio‐probes for various biological and clinical applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here