Premium
Efficient Fe‐Co‐N‐C Electrocatalyst Towards Oxygen Reduction Derived from a Cationic Co II ‐based Metal–Organic Framework Modified by Anion‐Exchange with Potassium Ferricyanide
Author(s) -
Chen XiangLan,
Huang JiaWei,
Huang YiChen,
Du Jie,
Jiang YuFei,
Zhao Yue,
Zhu HaiBin
Publication year - 2019
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201801776
Subject(s) - cationic polymerization , chemistry , electrocatalyst , inorganic chemistry , ion exchange , electrolyte , metal organic framework , catalysis , transition metal , metal , pyrolysis , oxygen , electrochemistry , ion , electrode , polymer chemistry , organic chemistry , adsorption
Abstract Fe‐Co‐N‐C electrocatalysts have proven superior to their counterparts (e.g. Fe‐N‐C or Co‐N‐C) for the oxygen reduction reaction (ORR). Herein, we report on a unique strategy to prepare Fe‐Co‐N‐C− x ( x refers to the pyrolysis temperature) electrocatalysts which involves anion‐exchange of [Fe(CN) 6 ] 3− into a cationic Co II ‐based metal‐organic framework precursor prior to heat treatment. Fe‐Co‐N‐C‐900 exhibits an optimal ORR catalytic performance in an alkaline electrolyte with an onset potential ( E onset : 0.97 V) and half‐wave potential ( E 1/2 : 0.86 V) comparable to that of commercial Pt/C ( E onset =1.02 V; E 1/2 =0.88 V), which outperforms the corresponding Co‐N‐C‐900 sample ( E onset =0.92 V; E 1/2 =0.84 V) derived from the same MOF precursor without anion‐exchange modification. This is the first example of Fe‐Co‐N‐C electrocatalysts fabricated from a cationic Co II ‐based MOF precursor that dopes the Fe element via anion‐exchange, and our current work provides a new entrance towards MOF‐derived transition‐metal (e.g. Fe or Co) and nitrogen‐codoped carbon electrocatalysts with excellent ORR activity.