Premium
Ladder‐Type Heteroarene‐Based Organic Semiconductors
Author(s) -
Chen Jianhua,
Yang Kun,
Zhou Xin,
Guo Xugang
Publication year - 2018
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201800860
Subject(s) - organic semiconductor , organic solar cell , materials science , semiconductor , delocalized electron , acceptor , nanotechnology , organic electronics , conjugated system , transistor , optoelectronics , polymer , chemistry , physics , organic chemistry , electrical engineering , engineering , voltage , composite material , condensed matter physics
The fusion of heteroaromatic rings into ladder‐type heteroarenes can stabilize frontier molecular orbitals and lead to improved physicochemical properties that are beneficial for applications in various optoelectronic devices. Thus, ladder‐type heteroarenes, which feature highly planar backbones and well‐delocalized π conjugation, have recently emerged as a promising type of organic semiconductor with excellent device performance in organic photovoltaics (OPVs) and organic field‐effect transistors (OFETs). In this Focus Review, we summarize the recent advances in ladder‐type heteroarene‐based organic semiconductors, such as hole‐ and electron‐transporting molecular semiconductors, and fully ladder‐type conjugated polymers towards their applications in OPVs and OFETs. The recent use of ladder‐type small‐molecule acceptor materials has strikingly boosted the power conversion efficiency of fullerene‐free solar cells, and selected examples of the latest developments in ladder‐type fused‐ring electron acceptor materials are also elaborated.