z-logo
Premium
A Tunable Cyclic Container: Guest‐Induced Conformational Switching, Efficient Guest Exchange, and Selective Isolation of C 70 from a Fullerene Mixture
Author(s) -
Mondal Pritam,
Rath Sankar Prasad
Publication year - 2017
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201700600
Subject(s) - porphyrin , fullerene , chemistry , dimer , selectivity , spectroscopy , crystallography , host–guest chemistry , crystal structure , photochemistry , supramolecular chemistry , organic chemistry , physics , quantum mechanics , catalysis
An adaptable cyclic porphyrin dimer with highly flexible linkers has been used as an artificial molecular container that can efficiently encapsulate various aromatic guests (TCNQ/C 60 /C 70 ) through strong π–π interactions by adjusting its cavity size and conformation. The planar aromatic guest (TCNQ) can be easily and selectively exchanged with larger aromatic guests (C 60 /C 70 ). During the guest‐exchange process, the two porphyrin rings switch their relative orientation according to the size and shape of the guests. This behavior of the cyclic container has been thoroughly investigated by using UV/Vis spectroscopy, NMR spectroscopy, and X‐ray crystal structure determination of the host–guest assemblies. The electrochemical and photophysical studies demonstrated the occurrence of photoinduced electron transfer from bisporphyrin to TCNQ/C 60 /C 70 in the respective host–guest assemblies. The cyclic host can form complexes with C 60 and C 70 with association constants of (2.8±0.2)×10 5 and (1.9±0.3)×10 8   m −1 , respectively; the latter value represents the highest binding affinity for C 70 reported so far for zinc(II) bisporphyrinic receptors. This high selectivity for the binding of C 70 versus C 60 allows the easy extraction and efficient isolation of C 70 from a C 60 /C 70 fullerene mixture. Experimental evidence was substantiated by DFT calculations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here