Premium
Graphene Oxide/Polyacrylamide/Aluminum Ion Cross‐Linked Carboxymethyl Hemicellulose Nanocomposite Hydrogels with Very Tough and Elastic Properties
Author(s) -
Kong Weiqing,
Huang Danyang,
Xu Guibin,
Ren Junli,
Liu Chuanfu,
Zhao Lihong,
Sun Runcang
Publication year - 2016
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201600138
Subject(s) - self healing hydrogels , materials science , polyacrylamide , nanocomposite , composite material , chemical engineering , graphene , oxide , polymer chemistry , nanotechnology , engineering , metallurgy
Abstract Development of high‐strength hydrogels has recently attracted ever‐increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al 3+ )‐cross‐linked carboxymethyl hemicellulose (Al‐CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al‐CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross‐linking of Al 3+ . The nanocomposite hydrogels were characterized by means of FTIR, X‐ray diffraction (XRD), and scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO 3.5 /PAM/Al‐CMH 0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as‐prepared GO/PAM/Al‐CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug‐delivery system applications.