z-logo
Premium
Controlling Peptide Self‐Assembly through a Native Chemical Ligation/Desulfurization Strategy
Author(s) -
Rasale Dnyaneshwar B.,
Konda Maruthi,
Biswas Sagar,
Das Apurba K.
Publication year - 2016
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201501458
Subject(s) - chemistry , native chemical ligation , tcep , chemical ligation , peptide , covalent bond , cysteine , dipeptide , combinatorial chemistry , self assembly , organic chemistry , phosphine , biochemistry , enzyme , catalysis
Self‐assembled peptides were synthesized by using a native chemical ligation (NCL)/desulfurization strategy that maintained the chemical diversity of the self‐assembled peptides. Herein, we employed oxo‐ester‐mediated NCL reactions to incorporate cysteine, a cysteine‐based dipeptide, and a sterically hindered unnatural amino acid (penicillamine) into peptides. Self‐assembly of the peptides resulted in the formation of self‐supporting gels. Microscopy analysis indicated the formation of helical nanofibers, which were responsible for the formation of gel matrices. The self‐assembly of the ligated peptides was governed by covalent and non‐covalent interactions, as confirmed by FTIR, CD, fluorescence spectroscopy, and MS (ESI) analyses. Peptide disassembly was induced by desulfurization reactions with tris(2‐carboxyethyl)phosphine (TCEP) and glutathione at 80 °C. Desulfurization reactions of the ligated peptides converted the Cys and penicillamine functionalities into Ala and Val moieties, respectively. The self‐supporting gels showed significant shear‐thinning and thixotropic properties.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here