Premium
Differential Effects of Polymer‐Surface Decoration on Drug Delivery, Cellular Retention, and Action Mechanisms of Functionalized Mesoporous Silica Nanoparticles
Author(s) -
You Yuanyuan,
Hu Hao,
He Lizhen,
Chen Tianfeng
Publication year - 2015
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201500769
Subject(s) - nanomedicine , mesoporous silica , ethylene glycol , nanoparticle , polymer , nanotechnology , drug delivery , materials science , drug , chemistry , rational design , peg ratio , mesoporous material , pharmacology , organic chemistry , medicine , finance , economics , catalysis
Polymer‐surface decoration has been found to be an effective strategy to enhance the biological activities of nanomedicine. Herein, three different types of polymers with a cancer‐targeting ligand Arg‐Gly‐Asp peptide (RGD) have been used to decorate mesoporous silica nanoparticles (MSNs) and the functionalized nanosystems were used as drug carriers of oxaliplatin (OXA). The results showed that polymer‐surface decoration of the MSNs nanosystem by poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) significantly enhanced the anticancer efficacy of OXA, which was much higher than that of chitosan (CTS). This effect was closely related to the enhancement of the cellular uptake and cellular drug retention. Moreover, PEI@MSNs‐OXA possessed excellent advantages in penetrating ability and inhibitory effects on SW480 spheroids that were used to simulate the in vivo tumor environments. Therefore, this study provides useful information for the rational design of a cancer‐targeted MSNs nanosystem with polymer‐surface decoration.