z-logo
Premium
Chemical Mechanisms of the Toxicological Properties of Nanomaterials: Generation of Intracellular Reactive Oxygen Species
Author(s) -
Yan Liang,
Gu Zhanjun,
Zhao Yuliang
Publication year - 2013
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201300542
Subject(s) - nanotoxicology , nanomaterials , reactive oxygen species , nanotechnology , intracellular , chemistry , nanoparticle , materials science , biochemistry
As more and more nanomaterials with novel physicochemical properties or new functions are created and used in different research fields and industrial sectors, the scientific and public concerns about their toxic effects on human health and the environment are also growing quickly. In the past decade, the study of the toxicological properties of nanomaterials/nanoparticles has formed a new research field: nanotoxicology. However, most of the data published relate to toxicological phenomena and there is less understanding of the underlying mechanism for nanomaterial‐induced toxicity. Nanomaterial‐induced reactive oxygen species (ROS) play a key role in cellular and tissue toxicity. Herein, we classify the pathways for intracellular ROS production by nanomaterials into 1) the direct generation of ROS through nanomaterial‐catalyzed free‐radical reactions in cells, and 2) the indirect generation of ROS through disturbing the inherent biochemical equilibria in cells. We also discuss the chemical mechanisms associated with above pathways of intracellular ROS generation, from the viewpoint of the high reactivity of atoms on the nanosurface. We hope to aid in the understanding of the chemical origin of nanotoxicity to provide new insights for chemical and material scientists for the rational design and creation of safer and greener nanomaterials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here