z-logo
Premium
Adsorption of Polycyclic Aromatic Hydrocarbons on Graphene Oxides and Reduced Graphene Oxides
Author(s) -
Sun Yubing,
Yang Shubin,
Zhao Guixia,
Wang Qi,
Wang Xiangke
Publication year - 2013
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201300496
Subject(s) - graphene , adsorption , naphthalene , graphite , anthracene , pyrene , chemical engineering , chemistry , materials science , inorganic chemistry , organic chemistry , nanotechnology , engineering
Graphene has attracted increasing attention in multidisciplinary studies because of its unique physical and chemical properties. Herein, the adsorption of polycyclic aromatic hydrocarbons (PAHs), such as naphthalene (NAP), anthracene (ANT), and pyrene (PYR), on reduced graphene oxides (rGOs) and graphene oxides (GOs) as a function of pH, humic acid (HA), and temperature were elucidated by means of a batch technique. For comparison, nonpolar and nonporous graphite were also employed in this study. The increasing of pH from 2 to 11 did not influence the adsorption of PAHs on rGOs, whereas the suppressed adsorption of NAP on rGOs was observed both in the presence of HA and under high‐temperature conditions. Adsorption isotherms of PAHs on rGOs were in accordance with the Polanyi–Dubinin–Ashtahhov (PDA) model, providing evidence that pore filling and flat surface adsorption were involved. The saturated adsorbed capacities (in mmol g −1 ) of rGOs for PAHs calculated from the PDA model significantly decreased in the order of NAP>PYR>ANT, which was comparable to the results of theoretical calculations. The pore‐filling mechanism dominates the adsorption of NAP on rGOs, but the adsorption mechanisms of ANT and PYR on rGOs are flat surface adsorption.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here