Premium
Star‐Shaped Trinuclear Cyclometalated Platinum(II) Complexes as Single‐Component Emitters in White‐Emitting PLEDs
Author(s) -
Shi Danyan,
Wang Yafei,
Liu Yu,
Zhang Zhiyong,
Luo Jian,
He Juan,
Chen Qing,
Lei Gangtie,
Zhu Weiguo
Publication year - 2012
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201200182
Subject(s) - phosphorescence , dopant , platinum , oled , materials science , benzene , excimer , photochemistry , biphenyl , common emitter , layer (electronics) , chemistry , optoelectronics , doping , nanotechnology , organic chemistry , physics , optics , fluorescence , catalysis
Two star‐shaped phosphorescent small molecules, Ph‐3FPt(pic) and 4Ph‐3FPt(pic), are single‐component emitters in polymer white‐light‐emitting diodes (WPLEDs) that are comprised of three blue–light‐emitting phosphorescent chromophores of FPt(pic) and are attached to benzene‐1,3,5‐trioxy‐ and 1,3,5‐tri(4‐oxyphenyl)benzene cores through a hexyloxy chain, respectively. Compared to their corresponding mono‐ or dinuclear platinum complexes, this class of star‐shaped homotrinuclear cyclometalated platinum(II) complexes exhibited controllable excimer emission. Stable white/near‐white emission was obtained in single‐emissive‐layer PLEDs by using the Ph‐3FPt(pic) or 4Ph‐3FPt(pic) as a single dopant and a blend of poly(vinylcarbazole) and 2‐(4‐biphenyl)‐5‐(4‐ tert ‐butyl‐phenyl)‐1,3,4‐oxadiazole as a host matrix at dopant concentrations of 1–4 wt. %. Our results provide an efficient way to control excimer formation and to obtain a single‐component emitter for use in WPLEDs.