Premium
Effect of Backbone Chemical Structure of Polymers on Selective (n,m)Single‐Walled Carbon Nanotube Recognition/Extraction Behavior
Author(s) -
Ozawa Hiroaki,
Fujigaya Tsuyohiro,
Niidome Yasuro,
Nakashima Naotoshi
Publication year - 2011
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.201100362
Subject(s) - carbon nanotube , chirality (physics) , materials science , raman spectroscopy , extraction (chemistry) , absorption (acoustics) , chemical engineering , nanotechnology , chemistry , organic chemistry , composite material , chiral symmetry breaking , physics , engineering , quantum mechanics , nambu–jona lasinio model , optics , quark
The development of a simple and facile method to extract single‐walled carbon nanotubes (SWNTs) with a specific chirality index is one of the most‐crucial issues in the fundamental study and applications of the SWNTs. We have compared the selective recognition/extraction of the SWNT chirality of poly(9,10‐dioctyl‐9,10‐dihydrophenanthrene‐2,7‐diyl) (2C8‐PPhO) to that of poly(9,9‐dioctyfluoreny1‐2,7‐diyl) (2C8‐PFO) that are able to extract specific semiconducting SWNTs free of any metallic SWNTs. Vis/NIR absorption, 2D photoluminescence, and Raman spectroscopy as well as molecular mechanical simulations were used to analyze and understand the obtained chiral selective solubilization behavior. We found that 2C8‐PPhO selectively extracts and enriches the (8,6), (8,7), and (9,7)SWNTs, whose behaviors are different from that of 2C8‐PFO, which preferentially extracts the (7,5), (7,6), (8,6), and (8,7)SWNTs. Our results indicate that 2C8‐PPhO preferably recognizes larger‐diameter SWNTs with higher chiral angles compared to those recognized by 2C8‐PFO. These findings demonstrate that the difference in the non‐aromatic ring numbers on the polymers results in different SWNT chirality recognition/extraction behaviors.