z-logo
Premium
Diels–Alder Reactions of Novel (1′‐Arylallylidene)cyclopropanes with Heterodienophiles
Author(s) -
Zhao Ligang,
Yucel Baris,
Scheurich René Peter,
Frank Daniel,
de Meijere Armin
Publication year - 2007
Publication title -
chemistry – an asian journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.18
H-Index - 106
eISSN - 1861-471X
pISSN - 1861-4728
DOI - 10.1002/asia.200600361
Subject(s) - nitrosobenzene , chemistry , yield (engineering) , chloroprene , organic chemistry , aryl , adduct , medicinal chemistry , iodide , catalysis , alkyl , materials science , natural rubber , metallurgy
Palladium‐catalyzed cross‐coupling of various aryl iodides with bicyclopropylidene provided isolable (1′‐arylallylidene)cyclopropanes, which reacted with a number of carbonyl compounds in the presence of Eu(fod) 3 under high pressure to furnish oxaspiro[2.5]octene derivatives in moderate to good yields (22–69 %). The reactions of the allylidenecyclopropanes with two azo compounds as dienophiles afforded diazaspiro[2.5]octenes in high yields (82 and 99 %) even at ambient pressure. When treated with nitrosobenzene, two of the allylidenecyclopropanes gave the Diels–Alder adducts in up to 83 and 40 % yield. 2,5‐Diiodo‐ p ‐xylene coupled twice with bicyclopropylidene, and the product underwent a twofold Diels–Alder reaction with nitrosobenzene to produce the bis(spirocyclopropaneoxazine) derivative in 88 % yield. This overall transformation can be brought about in a one‐pot, two‐step operation by addition of the nitrosoarene to the reaction mixture immediately after formation of the allylidenecyclopropanes to furnish various 5‐oxa‐4‐azaspiro[2.5]oct‐7‐ene derivatives in 22–77 % yield. The coupling of methyl bicyclopropylidenecarboxylate with 2,6‐dimethylphenyl iodide produced a mixture of very stable regioisomeric allylidenecyclopropane derivatives in 90 % yield. The reaction of this mixture with N ‐phenyltriazolinedione gave a corresponding mixture of the spirocyclopropanated heterobicycles in 61 % yield.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here