Premium
Beyond mean rating: Probabilistic aggregation of star ratings based on helpfulness
Author(s) -
Tay Wenyi,
Zhang Xiuzhen,
Karimi Sarvnaz
Publication year - 2020
Publication title -
journal of the association for information science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.903
H-Index - 145
eISSN - 2330-1643
pISSN - 2330-1635
DOI - 10.1002/asi.24297
Subject(s) - computer science , helpfulness , probabilistic logic , aggregate (composite) , data mining , data aggregator , artificial intelligence , information retrieval , machine learning , psychology , social psychology , computer network , materials science , wireless sensor network , composite material
The star‐rating mechanism of customer reviews is used universally by the online population to compare and select merchants, movies, products, and services. The consensus opinion from aggregation of star ratings is used as a proxy for item quality. Online reviews are noisy and effective aggregation of star ratings to accurately reflect the “true quality” of products and services is challenging. The mean‐rating aggregation model is widely used and other aggregation models are also proposed. These existing aggregation models rely on a large number of reviews to tolerate noise. However, many products rarely have reviews. We propose probabilistic aggregation models for review ratings based on the Dirichlet distribution to combat data sparsity in reviews. We further propose to exploit the “helpfulness” social information and time to filter noisy reviews and effectively aggregate ratings to compute the consensus opinion. Our experiments on an Amazon data set show that our probabilistic aggregation models based on “helpfulness” achieve better performance than the statistical and heuristic baseline approaches.