z-logo
Premium
The role of domain knowledge in document selection from search results
Author(s) -
Liu Jingjing,
Zhang Xiangmin
Publication year - 2019
Publication title -
journal of the association for information science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.903
H-Index - 145
eISSN - 2330-1643
pISSN - 2330-1635
DOI - 10.1002/asi.24199
Subject(s) - ranking (information retrieval) , information retrieval , relevance (law) , computer science , selection (genetic algorithm) , domain (mathematical analysis) , search engine , semantic search , world wide web , artificial intelligence , mathematical analysis , mathematics , political science , law
It is a frequently seen scenario that when people are not familiar with their search topics, they use a simple keyword search, which leads to a large amount of search results in multiple pages. This makes it difficult for users to pick relevant documents, especially given that they are not knowledgeable of the topics. To explore how systems can better help users find relevant documents from search results, the current research analyzed document selection behaviors of users with different levels of domain knowledge (DK). Data were collected in a laboratory study with 35 participants each searching on four tasks in the genomics domain. The results show that users with high and low DK levels selected different sets of documents to view; those high in DK read more documents and gave higher relevance ratings for the viewed documents than those low in DK did. Users with low DK tended to select documents ranking toward the top of the search result lists, and those with high in DK tended to also select documents ranking down the search result lists. The findings help design search systems that can personalize search results to users with different levels of DK.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here