z-logo
Premium
Discovering story chains: A framework based on zigzagged search and news actors
Author(s) -
Toraman Cagri,
Can Fazli
Publication year - 2017
Publication title -
journal of the association for information science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.903
H-Index - 145
eISSN - 2330-1643
pISSN - 2330-1635
DOI - 10.1002/asi.23885
Subject(s) - computer science , information retrieval , pairwise comparison , similarity (geometry) , set (abstract data type) , relevance (law) , coherence (philosophical gambling strategy) , measure (data warehouse) , similarity measure , data mining , image (mathematics) , artificial intelligence , statistics , mathematics , political science , law , programming language
A story chain is a set of related news articles that reveal how different events are connected. This study presents a framework for discovering story chains, given an input document, in a text collection. The framework has 3 complementary parts that i) scan the collection, ii) measure the similarity between chain‐member candidates and the chain, and iii) measure similarity among news articles. For scanning, we apply a novel text‐mining method that uses a zigzagged search that reinvestigates past documents based on the updated chain. We also utilize social networks of news actors to reveal connections among news articles. We conduct 2 user studies in terms of 4 effectiveness measures— relevance , coverage , coherence , and ability to disclose relations . The first user study compares several versions of the framework, by varying parameters, to set a guideline for use. The second compares the framework with 3 baselines. The results show that our method provides statistically significant improvement in effectiveness in 61% of pairwise comparisons, with medium or large effect size; in the remainder, none of the baselines significantly outperforms our method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom