z-logo
Premium
Comparison of extraction efficiency and selectivity between low‐temperature pressurized microwave‐assisted extraction and prolonged maceration
Author(s) -
Masota Nelson E.,
Vogg Gerd,
Heller Eberhard,
Holzgrabe Ulrike
Publication year - 2020
Publication title -
archiv der pharmazie
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.468
H-Index - 61
eISSN - 1521-4184
pISSN - 0365-6233
DOI - 10.1002/ardp.202000147
Subject(s) - maceration (sewage) , extraction (chemistry) , chemistry , chromatography , solvent , thermal stability , organic chemistry , materials science , composite material
Extraction is a key step in studying compounds from plants and other natural sources. The common use of high temperatures in pressurized microwave‐assisted extraction (PMAE) makes it unsuitable for the extraction of compounds with low or unknown thermal stability. This study aimed at determining the suitability of low‐temperature, short‐time PMAE in attaining yields comparable to those of prolonged maceration at room temperature. Additionally, we explored the phytochemical differences of the extracts from both techniques. Maceration at room temperature for 24 hr and PMAE at 40–45°C and 10 bar for 30 min were carried out on 18 samples from 14 plant species at a solvent‐to‐feeds ratio of 10. The PMAE yields of 16 out of 18 samples were within the proportions of 91–139.2% as compared with the respective extracts from maceration. Varying numbers of nonmatching peaks were noted in MS chromatograms of five extract pairs, indicating selective extraction of some compounds. Low‐temperature PMAE can attain reasonable extraction efficiency with the added value of sparing compounds of low thermal stability. The method can also enable the recovery of compounds distinct from those obtained by maceration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here