z-logo
Premium
PROTEIN PROFILES OF CHINESE WHITE WAX SCALE, Ericerus pela , AT THE MALE PUPAL STAGE BY HIGH‐THROUGHPUT PROTEOMICS
Author(s) -
Yang Pu,
Chen XiaoMing
Publication year - 2014
Publication title -
archives of insect biochemistry and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.576
H-Index - 66
eISSN - 1520-6327
pISSN - 0739-4462
DOI - 10.1002/arch.21191
Subject(s) - biology , proteomics , signal transduction , proteome , drosophila melanogaster , kegg , gene , microbiology and biotechnology , genetics , gene expression , transcriptome
The Chinese white wax scale insect ( Ericerus pela ) is sexually dimorphic with holometabolous males and hemimetabolous females. Holometabolous insects were assumed to originate from hemimetabolous ancestors. Therefore, the male pupal stage is a major innovation compared with hemimetabolous female insects. Here, the protein profiles of the male pupae were obtained by high‐throughput proteomics and analyzed using bioinformatics methods. A total of 1,437 peptides were identified and assigned to 677 protein groups. Most of the proteins had molecular weights below 40 kDa and isoelectric points from 4 to 7. Gene Ontology terms were assigned to 331 proteins, including metabolic process, developmental process, and cellular process. Kyoto Encyclopedia of Genes and Genomes annotations identified 142 pathways and most proteins were assigned to metabolism events. Pathways involved in cell growth and death, signal transduction, folding, and sorting and degradation were also identified. Six proteins that had undergone positive selection were classified into four groups, protein biosynthesis, protein degeneration, signal transduction, and detoxification. Many of the high‐abundance proteins were enzymes involved in carbohydrate, lipid, and amino acid metabolism; signal transduction; degradation; and immunization, which indicated that metabolism, disruption, and development occurred intensely at the pupal stage. These processes are closely related to the physiological status of pupae. The results also suggested that these related proteins may be fundamental factors in the formation of pupae. This study describes pupal characterization at the molecular level and provides a basis for further physiological studies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here