Premium
Isolation and characterization of farnesyl diphosphate synthase from the cotton boll weevil, Anthonomus grandis
Author(s) -
Taban A. Huma,
Tittiger Claus,
Blomquist Gary J.,
Welch William H.
Publication year - 2009
Publication title -
archives of insect biochemistry and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.576
H-Index - 66
eISSN - 1520-6327
pISSN - 0739-4462
DOI - 10.1002/arch.20302
Subject(s) - farnesyl diphosphate synthase , anthonomus , biology , biochemistry , atp synthase , prenyltransferase , complementary dna , stereochemistry , sf9 , enzyme , recombinant dna , biosynthesis , chemistry , gene , botany , spodoptera , curculionidae
Abstract Farnesyl diphosphate synthase (FPPS) catalyzes the consecutive condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate to form farnesyl diphosphate (FPP). In insects, FPP is used for the synthesis of ubiquinones, dolicols, protein prenyl groups, and juvenile hormone. A full‐length cDNA of FPPS was cloned from the cotton boll weevil, Anthonomus grandis (AgFPPS). AgFPPS cDNA consists of 1,835 nucleotides and encodes a protein of 438 amino acids. The deduced amino acid sequence has high similarity to previously isolated insect FPPSs and other known FPPSs. Recombinant AgFPPS expressed in E. coli converted labeled isopentenyl diphosphate in the presence of dimethylallyl diphosphate to FPP. Southern blot analysis indicated the presence of a single copy gene. Using molecular modeling, the three‐dimensional structure of coleopteran FPPS was determined and compared to the X‐ray crystal structure of avian FPPS. The α‐helical fold is conserved in AgFPPS and the size of the active site cavity is consistent with the enzyme being a FPPS. © 2009 Wiley Periodicals, Inc.