z-logo
Premium
Applications of EcR gene switch technology in functional genomics
Author(s) -
Tavva Venkata S.,
Palli Subba R.,
Dinkins Randy D.,
Collins Glenn B.
Publication year - 2007
Publication title -
archives of insect biochemistry and physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.576
H-Index - 66
eISSN - 1520-6327
pISSN - 0739-4462
DOI - 10.1002/arch.20193
Subject(s) - ecdysone receptor , biology , functional genomics , ecdysone , computational biology , transgene , gene , regulation of gene expression , arabidopsis , genetics , microbiology and biotechnology , genomics , transcription factor , nuclear receptor , genome , mutant
Abstract Genetic engineering of plants using transgenic technology is targeted to enhance agronomic performance or improved quality traits in a wide variety of plant species, and has become a fundamental tool for basic research in plant biotechnology. Constitutive promoters are presently the primary means used to express transgenes in plants. However, inducible gene regulation systems based on specific chemicals have many potential applications in agriculture and for enhancing the basic understanding of gene function. As a result, several gene switches have been developed. The ecdysone receptor gene switch is one of the best inducible gene regulation systems available, because the chemical, methoxyfenozide, required for its regulation is registered for field use. An EcR gene switch with a potential for use in large‐scale field applications has been developed by adopting a two‐hybrid format. In a two‐hybrid switch format, the GAL4 DNA binding domain (GAL4 DBD) was fused to the ligand binding domain (LBD) of the Choristoneura fumiferana ecdysone receptor (CfEcR); and, the VP16 activation domain (VP16 AD) was fused to the LBD of Locust migratoria retinoid X receptor (LmRXR). The sensitivity of the CfEcR gene switch was improved from micromolar to nanomolar concentrations of ligand by using the CfEcR:LmRXR two‐hybrid switch. In this report, we demonstrate the utility of CfEcR:LmRXR two‐hybrid gene switch in functional genomics applications for regulating the expression of a Superman ‐like single zinc finger protein 11 ( ZFP11 ) gene in both Arabidopsis and tobacco transgenic plants. Arch. Insect Biochem. Physiol. 65:164–179, 2007. © 2007 Wiley‐Liss, Inc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here