z-logo
open-access-imgOpen Access
Neurobiological specializations in echolocating bats
Author(s) -
Covey Ellen
Publication year - 2005
Publication title -
the anatomical record part a: discoveries in molecular, cellular, and evolutionary biology
Language(s) - English
Resource type - Journals
eISSN - 1552-4892
pISSN - 1552-4884
DOI - 10.1002/ar.a.20254
Subject(s) - human echolocation , auditory system , neuroscience , brainstem , biology , auditory pathways , superior olivary complex , nervous system , cochlear nucleus
Although the bat's nervous system follows the general mammalian plan in both its structure and function, it has undergone a number of modifications associated with flight and echolocation. The most obvious neuroanatomical specializations are seen in the cochleas of certain species of bats and in the lower brainstem auditory pathways of all microchiroptera. This article is a review of peripheral and central auditory neuroanatomical specializations in echolocating bats. Findings show that although the structural features of the central nervous system of echolocating microchiropteran bats are basically the same as those of more generalized mammals, certain pathways, mainly those having to do with accurate processing of temporal information and auditory control of motor activity, are hypertrophied and/or organized somewhat differently from those same pathways in nonecholocating species. Through the resulting changes in strengths and timing of synaptic inputs to neurons in these pathways, bats have optimized the mechanisms for analysis of complex sound patterns to derive accurate information about objects in their environment and direct behavior toward those objects. © 2005 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here