z-logo
open-access-imgOpen Access
Innervation of the sinusoidal wall: Regulation of the sinusoidal diameter
Author(s) -
Ueno Takato,
BioulacSage Paulette,
Balabaud Charles,
Rosenbaum Jean
Publication year - 2004
Publication title -
the anatomical record part a: discoveries in molecular, cellular, and evolutionary biology
Language(s) - English
Resource type - Journals
eISSN - 1552-4892
pISSN - 1552-4884
DOI - 10.1002/ar.a.20092
Subject(s) - sinusoid , hepatic stellate cell , microcirculation , free nerve ending , contraction (grammar) , endothelin receptor , biology , receptor , guinea pig , endocrinology , microbiology and biotechnology , medicine , chemistry , anatomy , immunology
In the livers of humans, cats, guinea pigs, and tupaia, nerve endings are distributed all over the hepatic lobules. Nerve endings in the intralobular spaces are localized mainly in the Disse spaces and are oriented toward the hepatic stellate cells (HSCs), sinusoidal endothelial cells, and hepatocytes. They are especially closely related to HSCs. Various neurotransmitters such as substance P exist in the nerve endings. In addition, HSCs possess endothelin (ET) and adrenergic receptors and contract in response to the corresponding agonists. In contrast, nitric oxide (NO) inhibits the contraction of HSCs. HSCs thus appear to be involved in the regulation of hepatic sinusoidal microcirculation by contraction and relaxation. In the cirrhotic liver, intralobular innervation is decreased, but ET, ET receptors, and NO are overexpressed in the HSCs. These findings indicate that HSCs in cirrhotic liver may play an important role in the sinusoidal microcirculation through agents such as ET or NO rather than through intralobular innervation. © 2004 Wiley‐Liss, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here