z-logo
Premium
Prediction of leg muscle activities from arm muscle activities in arm and leg cycling
Author(s) -
Radeleczki Balazs,
Mravcsik Mariann,
Bozheim Lilla,
Laczko Jozsef
Publication year - 2023
Publication title -
the anatomical record
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.678
H-Index - 62
eISSN - 1932-8494
pISSN - 1932-8486
DOI - 10.1002/ar.25004
Subject(s) - functional electrical stimulation , cycling , electromyography , physical medicine and rehabilitation , leg muscle , lower limb , artificial neural network , stimulation , computer science , medicine , artificial intelligence , surgery , archaeology , history
Functional electrical stimulation (FES) driven leg cycling is usually controlled by previously established stimulation patterns. We investigated the potential utilization of a particular computational method for controlling electrical stimulation of lower limb muscles by real‐time electromyography (EMG) signals of arm muscles during hybrid arm and leg cycling. In hybrid arm and leg cycling, arm cranking is performed voluntarily, while leg cycling is driven by FES. In this study, we investigate arm and leg cycling movements of able‐bodied persons when both arm and leg cycling is performed voluntarily without FES. We present a neural network‐based model in which the input of the neural network is given by a time series of upper limb muscle activities (EMG), and the output provides potential lower limb muscle activities. The particular neural network was a nonlinear autoregressive exogen (NARX) neural network. The measured EMG signals of the lower limb muscles were compared to the signals that were predicted by the neural network. The neural network was trained with data recorded from four participants. Our preliminary results show notable differences between the predicted and the experimentally measured lower limb muscle activities. The prediction was good only for 60% of the movement time. We conclude that—while including arm cycling in the movement—simpler control modalities or further consideration of applying machine‐learning techniques has to be taken into account to improve voluntary upper limb‐controlled FES assisted leg cycling.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here