z-logo
Premium
Marine Mammal Lung Dynamics when Exposed to Underwater Explosion Impulse
Author(s) -
Fetherston Thomas,
Turner Stephen,
Mitchell Glenn,
Guzas Emily
Publication year - 2019
Publication title -
the anatomical record
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.678
H-Index - 62
eISSN - 1932-8494
pISSN - 1932-8486
DOI - 10.1002/ar.24033
Subject(s) - marine mammal , underwater , impulse (physics) , mammal , environmental science , geology , biology , oceanography , fishery , physics , paleontology , classical mechanics
Very little is known about marine mammal susceptibility to primary blast injury (PBI) except in rare cases of opportunistic studies. As a result, traditional analysis techniques relied on methods developed more than 30 years ago using terrestrial mammals as surrogates. Modeling tools available today have the computing power to vastly improve calculation of safe ranges and injury zones from underwater explosions (UNDEX) employing morphologically accurate proxies with material properties similar to marine mammal tissues. The Dynamic System Mechanics Advanced Simulation (DYSMAS) fluid–structure interaction (FSI) software is being used to simulate the complex phenomena of UNDEX, shock wave, and bubble pulse propagation through the water and transmission of energy to a cetacean focusing on the dynamic response of the thoracic cavity and air‐filled lungs to a shock wave. The approach integrates fluid and structural analyses with the material properties of blubber, bone, and muscle using marine mammal morphometrics to eliminate unnecessary assumptions made during more traditional approaches to analysis developed before these types of data and computational power were available. DYSMAS analyses of a 1D gas bubble surrounded by water was found to closely match the classical bubble dynamics models. Further, DYSMAS models of a spherical gas bubble surrounded by tissue and rib structure demonstrate a global radial oscillation of the gas bubble, but also show significant local deflection and material strain in response to the UNDEX loading. The intended result of the investigation is an improved and scientifically defensible understanding of the effects of UNDEX on marine mammals. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 302:718–734, 2019. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here