Premium
Cell Cycle Genes PEDF and CDKN1C in Growing Deer Antlers
Author(s) -
Lord Eric A.,
Martin Shirley K.,
Gray Jason P.,
Li Chunyi,
Clark Dawn E.
Publication year - 2007
Publication title -
the anatomical record: advances in integrative anatomy and evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.678
H-Index - 62
eISSN - 1932-8494
pISSN - 1932-8486
DOI - 10.1002/ar.20562
Subject(s) - pedf , antler , biology , microbiology and biotechnology , endochondral ossification , cell cycle , cartilage , cell growth , immunology , angiogenesis , gene , anatomy , genetics , ecology
Deer antlers are the only mammalian appendage to display an annual cycle of full regeneration. The growth phase in antler involves the rapid proliferation of several tissues types, including epidermis, dermis, cartilage, bone, blood vessels, and nerves. Antlers thus provide an excellent model to study the developmental regulation of these tissues. We describe here the identification of two genes, pigment epithelium‐derived factor (PEDF) and cyclin‐dependent kinase inhibitor 1C (CDKN1C), both of which are known to be involved in cell proliferation and differentiation. These genes were identified as the result of screening an expressed sequence tag database derived from a cDNA library enriched for sequences from the growing antler tip. PEDF mRNA was detected in developing skin, cartilage, and bone during endochondral ossification. PEDF mRNA was not detected within endothelial cells that exhibited positive immunoreactivity to a CD146 antibody. CDKN1C mRNA was expressed by only the immature chondrocytes within the precartilage region. These results suggested that PEDF and CDKN1C are important genes involved in cell proliferation and differentiation during antler growth. Anat Rec, 2007. © 2007 Wiley‐Liss, Inc.