Premium
Early morphogenesis of the sinuatrial region of the chick heart: A contribution to the understanding of the pathogenesis of direct pulmonary venous connections to the right atrium and atrial septal defects in hearts with right isomerism of the atrial appendages
Author(s) -
Männer Jörg,
Merkel Nico
Publication year - 2007
Publication title -
the anatomical record: advances in integrative anatomy and evolutionary biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.678
H-Index - 62
eISSN - 1932-8494
pISSN - 1932-8486
DOI - 10.1002/ar.20418
Subject(s) - sinus venosus , cardiology , anatomy , medicine , pulmonary vein , atrium (architecture) , pulmonary artery , left atrium , heart development , atrial fibrillation , biology , biochemistry , embryonic stem cell , gene
The morphogenesis of the sinuatrial region of embryonic hearts is still not well understood. Current matters of dispute are the topogenesis of the future pulmonary vein orifice and the topogenesis of the primary atrial septum. We analyzed the development of the sinuatrial region in chick embryos ranging from Hamburger and Hamilton (HH) stage 14 to 25. Our study disclosed three features of sinuatrial development. First, the primitive atrium of the HH stage 16 chick embryo heart has a separate inflow component. This inflow component takes up the mouth of the confluence of the systemic veins (sinus venosus) as well as the future mouth of the common pulmonary vein (pulmonary pit). The left portion of the atrial inflow component becomes incorporated into the left atrium and its right portion becomes incorporated into the right atrium. Rightward growth of the sinuatrial fold separates the sinus venosus from the left atrium. Second, the pulmonary pit originally forms as a bilaterally paired structure. Its left and right portions are connected to the left and right portions of the atrial inflow component, respectively. Normally, only the left portion of the pulmonary pit deepens to form the common pulmonary vein orifice, whereas the right portion disappears. Third, the primary atrial septum of the chick heart is not formed at the original midline of the embryonic heart, but is formed to the left of the original midline. This finding is in accord with molecular data suggesting that the primary atrial septum derives from the left heart‐forming field. Our findings shed new light on the pathogenesis of direct pulmonary venous connections to the right atrium and atrial septal defects in hearts with right isomerism of the atrial appendages. Anat Rec 290:168–180, 2007. © 2007 Wiley‐Liss, Inc.