z-logo
Premium
Improving the detection of rare native fish species in environmental DNA metabarcoding surveys
Author(s) -
Rojahn Jack,
Gleeson Dianne M.,
Furlan Elise,
Haeusler Tim,
Bylemans Jonas
Publication year - 2021
Publication title -
aquatic conservation: marine and freshwater ecosystems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.95
H-Index - 77
eISSN - 1099-0755
pISSN - 1052-7613
DOI - 10.1002/aqc.3514
Subject(s) - environmental dna , endangered species , threatened species , invasive species , biology , introduced species , primer (cosmetics) , fishery , common carp , polymerase chain reaction , ecology , fish <actinopterygii> , cyprinus , habitat , biodiversity , genetics , gene , chemistry , organic chemistry
The presence of threatened or endangered species often strongly influences management and conservation decisions. Within the Murray–Darling Basin (MDB), Australia, the presence of threatened native fish affects the management and allocation of water resources. In New South Wales, these decisions are currently based on traditional fisheries data and a predictive MaxEnt model. However, it is important to verify the model's predictive power given the implication it may have, but this requires methods with a high detection sensitivity for rare species. Although the use of environmental DNA (eDNA) monitoring, in particular eDNA metabarcoding, achieves a higher detection sensitivity compared with traditional methods, earlier surveys in the MDB have shown that the highly abundant and invasive common carp ( Cyprinus carpio ) can reduce detection probabilities for rare species. Consequently, a polymerase chain reaction (PCR) blocking primer designed to block the amplification of carp eDNA could increase the detection probabilities for rare native species while simultaneously reducing the required sampling effort and survey costs. Although PCR blocking primers are often used in ancient DNA and dietary studies, no aquatic eDNA metabarcoding study to date has evaluated the potential benefits of using PCR blocking primers. A laboratory and field‐based pilot study was used to address this knowledge gap and assess the impact of a blocking primer, targeting cyprinid fishes (including carp), on the detection probabilities of native species and the minimum sampling effort required. Results showed that the inclusion of the blocking primer increased the detection probabilities for native species by 10–20% and reduced the minimum required sampling effort by 25–50%. These findings provide important insights into possible methods for optimizing eDNA metabarcoding surveys for the detection of rare aquatic species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here