Premium
Urea impregnated multiwalled carbon nanotubes; a formaldehyde scavenger for urea formaldehyde adhesives and medium density fiberboards bonded with them
Author(s) -
Mazaheri Mehrdad,
Moghimi Hamid,
Taheri Ramezan Ali
Publication year - 2022
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.51445
Subject(s) - formaldehyde , urea formaldehyde , materials science , scavenger , adhesive , nuclear chemistry , urea , free radical scavenger , composite number , composite material , scanning electron microscope , thermogravimetric analysis , chemical engineering , chemistry , organic chemistry , radical , antioxidant , layer (electronics) , engineering
Multiwalled carbon nanotubes (MWCNTs) were subjected to modification by urea to use as formaldehyde scavenger in urea formaldehyde (UF) adhesive and reducing the free formaldehyde emission of the medium density fiberboards (MDFs). Morphological differences besides elemental analysis was investigated using field emission scanning electron microscopy (FESEM) and energy dispersive X‐ray spectroscopy. The effect of urea impregnated MWCNTs filler on the physical, morphological and thermal properties of the UF resin has investigated. Furthermore, characterization of the mechanical properties, free formaldehyde emission and thickness swelling were carried out for the MDF panels. From the results, the free formaldehyde of the UF resins was significantly decreased. The lowest free formaldehyde was belonged to the sample with 3 wt% of scavenger which was about 71% lower than the value for neat UF resin. Accordingly, the formaldehyde emission of the fiberboards was also showed a descending trend by incorporation of MWCNTs‐U to the composite structure. It was decreased from 9.67 to 3.89 mg/100 g dried board. These results indicated that the prepared nano modifier was successfully performed as a formaldehyde scavenger for the UF resin and could prevent the hazards of the free formaldehyde emission from MDF panels.