z-logo
Premium
Effect of the interphase properties on the fracture energy and fatigue behavior of thermoset resins containing spherical fillers
Author(s) -
Khezri Jamal,
RashAhmadi Samrand,
Alizadeh Kaklar Javad
Publication year - 2021
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.51293
Subject(s) - interphase , materials science , composite material , thermosetting polymer , multiscale modeling , fracture toughness , fracture (geology) , toughness , nanocomposite , fracture mechanics , dissipation , modulus , chemistry , genetics , computational chemistry , physics , biology , thermodynamics
Interphase region in polymer based nanocomposites is a very thin layer that is created between the reinforcing phase and the matrix surface due to reaction forces between the nanoparticles and the matrix. The ability to determine the behavior of the interphase region can facilitate the understanding and prediction of the fracture toughness and fatigue behavior through multiscale modeling. In the present study, by using the fully analytical multiscale hierarchical modeling method, fracture toughness and also fatigue behavior of thermoset resins containing spherical fillers with consideration the influences of the main damage mechanisms and interphase properties (thickness and elastic modulus of the interphase region) were investigated. The novelty of this investigation is that it enables the application of a range of properties to the interphase zone and describes a technique for multiscale modeling based on this interphase zone. The present multiscale approach quantifies the dissipation energy due to main damage mechanisms at the nanoscale and accounts for the emergence of an interphase region as functionally graded (FG) properties surrounding nanofillers. Modeling of FG interphase power‐varying properties, the derivation of governing equations, and the evaluation of the findings, all are parts of the achievements of this research. In addition, multiscale analyses have been carried out on fracture energy and fatigue behavior in various fiber volume fractions with and without interphase properties. It was found that the fracture toughness and fatigue behavior are significantly dependent on the interphase elastic properties and thickness. Furthermore, the critical debonding stress and the fracture energy were assessed with various interfacial fracture energy, elastic modulus, and thickness of interphase. Finally, the accuracy of the utilized multiscale approach with consideration of interphase properties was verified by comparing the modeling results with experimental tests on thermoset resins containing spherical fillers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here