z-logo
Premium
Rubber's dissipated energy quantification used in vibratory insulation and protection systems
Author(s) -
Chiter Ammar
Publication year - 2021
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.50066
Subject(s) - dissipation , natural rubber , materials science , vibration , damper , structural engineering , transmissibility (structural dynamics) , work (physics) , composite material , engineering , acoustics , mechanical engineering , vibration isolation , physics , thermodynamics
In vibratory protection and insulation systems, the major problem consist to choose suitable passive elements (spring, damper, others), which are inserted between the resonator and the exciter which have the role of preventing or reducing the transmission of dynamic forces. This work consists of characterizing a synthetic rubber (SR) sample of hollow circular shape (design requirement) by determining the coefficient of energy dissipation at an average ambient temperature of 20°C with a humidity of 25%. The mechanical load and discharge tests make it possible to draw hysteresis curves through which the dissipation coefficient will be determined, the load values is between 500 and 1000 N, with 30, 60, and 90 mm/min loading speeds and a number of cycles 2, 3, and 5, these values have been chosen so as not to cause the effect of cyclic hardening and softening and also to take into consideration, that the vibration limits movement at 3 cycles, which makes this test different from other tests such as fatigue. The processing of different curves, allows to determine energy dissipation coefficient of rubber specimen and also to examine its variation as a function of load, loading speed, and number of cycles; it is possible to determine other characteristics from this coefficient, such as, damping ratio, dynamic amplification factor, and so on, necessary to study efficiency of protection systems, design, and manufacture, based on the curve of transmissibility of dynamic forces to evaluate performance rubber conditions use.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here