z-logo
Premium
Manipulation of thick‐walled PEEK bushing crystallinity and modulus via instrumented compression molding
Author(s) -
AlMezrakchi Ruaa,
Creasy Terry,
Sue HungJue,
Bremner Tim
Publication year - 2021
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.49930
Subject(s) - peek , crystallinity , materials science , composite material , compression molding , molding (decorative) , modulus , compaction , polyether ether ketone , thermal conductivity , mold , polymer
An instrumented hot compression molding apparatus was fabricated to allow real‐time monitoring and precise temperature control during the compaction and consolidation of large polyether ether ketone (PEEK) products. The objective was to determine the impact of controlled variables on the properties of the molded article. Four different strategies were designed to control the mold thermal profiles. The average crystallinity in a commercial molding process is restricted due to large thermal masses with low thermal conductivity. In contrast, this research was able to reduce the crystallinity range from 33% to 6% by developing a special controlled apparatus and implementing new processing methodologies. In this study, PEEK showed a significant increase in the modulus compared to typical values measured on commercially produced analogs, and a higher degree of property uniformity. In a single commercially molded PEEK billet, compressive modulus variability was 13% at room temperature, and 21% at 225°C. Properties of billets produced using the laboratory apparatus showed a reduction in variability to 2%.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom