Premium
Bio‐based hydroxymethylated eugenol modified bismaleimide resin and its high‐temperature composites
Author(s) -
Ning Yi,
Li Diansen,
Wang Mingcun,
Chen Yichi,
Jiang Lei
Publication year - 2021
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.49631
Subject(s) - eugenol , thermosetting polymer , materials science , composite material , thermal stability , flexural strength , formaldehyde , composite number , maleimide , organic chemistry , chemistry
Hydroxymethylated eugenol (MEG) and poly (hydroxymethylated eugenol) (PMEG) were synthesized by the condensation reaction of eugenol (EG) with formaldehyde. The different contents of MEG and PMEG were used to modify 4,4′‐bismaleimidediphenylmethane (BMI). The cured MEG‐BMI resins exhibit good thermal stability evidenced by its 5% weight loss temperatures above 407°C and its residue above 39.4% at 800°C under nitrogen. For carbon/MEG‐BMI composites, their glass transition temperatures were around 400°C; their flexural strength and moduli were maintained at a range of 488.87–575.47 MPa and 48.84–60.26 GPa, respectively. With the increasing content of BMI in the resin formulation, the flexural properties decreased; comprehensively the composite with the eugenol/maleimide unit ratio (1:0.3 mol) had the best mechanical and thermal properties, meanwhile its renewable carbon content was as high as 57.80%. As a new candidate of high temperature thermosetting resin, MEG would find promising applications for advanced composites' matrice.