z-logo
Premium
Prestretching effect and recovery process of polyvinyl alcohol film crosslinked with tartaric acid
Author(s) -
Bozdoğan Altan,
Aksakal Baki,
Denktaş Cenk,
Salt Yavuz
Publication year - 2020
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.49421
Subject(s) - ultimate tensile strength , polyvinyl alcohol , materials science , composite material , crystallinity , tartaric acid , composite number , deformation (meteorology) , membrane , chemistry , organic chemistry , citric acid , biochemistry
Abstract The tartaric acid (TA)/polyvinyl alcohol (PVA) composite films were prepared with various TA concentrations from 5 to 20 wt%. The crosslinking due to TA improved the tensile characteristics such as tensile strength and the Young's modulus, and thermal stability of the films. The addition of TA in PVA led to a decrease in the crystallinity. Application of prestretching or preliminary deformation resulted in significant changes in both stress–strain behavior and tensile characteristics of both pure PVA and TA/PVA composite films. Although low preextension levels such as 5% strain did not change much the tensile characteristics, higher preextension levels improved the tensile strength but decreased the extensibility of the films. The recovery processes of the stretched films consisted of a fast recovery process for which most of the recoverable elastic deformation is seen took place within almost 30 min and a time‐dependent long‐lasting recovery process continued in time very slowly, which resulted in undesirable residual deformation. It was also observed that increasing TA concentration accelerated the recovery process, hence, improved the recovery properties of PVA. The use of TA in the membrane applications can be considered to improve the mechanical properties and reusability of the membrane technology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here