Premium
Mechanical properties and thermal stability of porous polyimide/hollow mesoporous silica nanoparticles composite films prepared by using polystyrene microspheres as the pore‐forming template
Author(s) -
Jia Weihong,
Wang Jinqing,
Ma Limin,
Ren Sili,
Yang Shengrong
Publication year - 2020
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.48792
Subject(s) - materials science , polyimide , composite number , polystyrene , thermal stability , porosity , composite material , nanocomposite , nanoparticle , mesoporous material , polymer , chemical engineering , nanotechnology , layer (electronics) , chemistry , biochemistry , catalysis , engineering
The porous polyimide/hollow mesoporous silica nanoparticles (PI/HMSNs) composite films were fabricated via blending polymerization by using polystyrene (PS) microspheres as the pore‐forming template. The morphologies, microstructures, thermal stability, thermal expansion coefficient (TEC), and mechanical performances of the porous PI/HMSNs films were characterized in detail. Results showed that the uniform dispersion of HMSNs benefits from the strong hydrogen‐bonding interaction between the hydroxyl groups of HMSNs and poly(amic acid) chains. Both weight loss and TEC of the porous PI/HMSNs films are lower than those of the pure porous PI film. When 0.8 wt % HMSNs and 7.0 wt % PS were added into the PI matrix, the Young's modulus and tensile strength of composite film increased by about 32.4% and 68.1% compared with those of the pure porous PI film. Conclusively, the introduction of HMSNs in the porous PI matrix is an important strategy to enrich the diversity of porous structure, improve the thermal and mechanical properties of the porous PI material simultaneously. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137 , 48792.