Premium
Construction of electrostatic and π–π interaction to enhance interfacial adhesion between carbon nanoparticles and polymer matrix
Author(s) -
Ma Lin,
Zhao Dan,
Zheng Junping
Publication year - 2020
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.48633
Subject(s) - materials science , nanocomposite , carbon nanotube , polymer , nanoparticle , composite material , graphene , adhesion , ultimate tensile strength , cationic polymerization , chemical engineering , polymer chemistry , nanotechnology , engineering
In this study, an efficient method by constructing electrostatic and π–π interaction to enhance interfacial adhesion of nanocomposites was contrived. As commercial products and commonly used reinforcements, carbon nanotubes (CNTs) and graphene oxide (GO) were selected as fillers. Two kinds of interactions between carbon nanoparticles and polymer matrix were constructed by adding auxiliary comonomers (ACMs) into nanocomposites, in which one was the electrostatic interaction between quaternary ammonium cationic groups on ACMs as well as oxygen‐containing groups of carbon nanoparticles, while the other was the π–π interaction between benzene rings on ACMs and conjugated structure on nanoparticles. Poly(methyl methacrylate) (PMMA) was chosen as a polymer matrix. It was found that carbon nanoparticles dramatically improved properties of nanocomposites, including thermal and mechanical performances due to the construction of electrostatic and π–π interaction on the interface. Compared with PMMA, the tensile strength of CNTs and GO reinforced nanocomposites was improved by 43.1 and 57.5%, respectively. The thermal decomposition temperature of CNTs and GO reinforced nanocomposites was improved by 21 and 23°C, respectively. Interesting and convincing results proved that the construction of multiple interactions can provide a promising method to effectively enhance interfacial adhesion of nanocomposites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137 , 48633.