Premium
Quantification of the Young's modulus for polypropylene: Influence of initial crystallinity and service temperature
Author(s) -
Li Jiquan,
Zhu Zhou,
Li Taidong,
Peng Xiang,
Jiang Shaofei,
Turng LihSheng
Publication year - 2020
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.48581
Subject(s) - crystallinity , materials science , polypropylene , tacticity , composite material , modulus , annealing (glass) , compression molding , young's modulus , dynamic mechanical analysis , polymer , polymerization , mold
ABSTRACT In this study, the mechanical properties of isotactic polypropylene (iPP) materials with different crystallinities at room and elevated temperatures were investigated. In order to obtain samples with a certain range of crystallinity, and to ensure a uniform microstructure of these samples, the iPP samples obtained by injection molding required melt compression molding and controlled annealing. In the macromechanical studies, the experimental results showed that the storage modulus and Young's modulus of polypropylene were sensitive to the service temperature. The crystallinity also had a great influence on this relationship. A function was proposed to evaluate the dependence of the Young's modulus of polypropylene on initial crystallinity and service temperature, and tested based on experimental data. The Young's modulus of iPP is reduced by about 90% when the service temperature rises from 25 to 125 °C. Moreover, the reduced value in Young's modulus between polypropylene having the highest and lowest crystallinity was reduced from 214.55 to 56.75 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137 , 48581.