Premium
Natural‐based polymers for antibacterial treatment of absorbent materials
Author(s) -
Kaplan Sibel,
Aslan Selçuk,
Ulusoy Seyhan,
Oral Ayhan
Publication year - 2020
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.48302
Subject(s) - thermogravimetric analysis , materials science , antibacterial activity , thermal stability , polymer , polypropylene , antibacterial agent , nuclear chemistry , chemical engineering , differential scanning calorimetry , polymer chemistry , composite material , organic chemistry , chemistry , biochemistry , genetics , bacteria , biology , antibiotics , thermodynamics , physics , engineering
ABSTRACT In this study, polypropylene (PP) nonwoven fabric which can be used as topsheet layer of an absorbent hygienic product was modified by natural based antibacterial agents. Antibacterial herbal agents (cinnamaldehyde, geraniol, phenylethyl alcohol) were sprayed by ethanol or applied by means of polylactic acid (PLA) and polycyclohexene oxide (PCHO) based polymers prepared by three different chemical methods. Characterization of synthesized materials was conducted via thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy–energy dispersive X–ray spectroscopy (SEM‐EDX). Besides characterization, antibacterial and pH buffering performances of antibacterial polymers alone and on PP fabric were tested by antibacterial and pH tests. Effects of antibacterial treatments on air permeability and absorption period of nonwoven fabrics were also analyzed. According to the results, biopolymers changed the thermal stability of PP nonwoven fabric. Antibacterial performances can be ranked as cinnamaldehyde, geraniol, and phenylethyl alcohol from the best. Besides a slight decrease about liquid absorption performance, all of the treated topsheet fabrics are sufficient for an absorbent hygienic product. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137 , 48302.