Premium
Prevention of poly(vinyl chloride) degradation through organic terephthalamides generated from poly(ethylene terephthalate) waste
Author(s) -
Verma Anjali,
Soni Rakesh Kumar,
Teotia Meenu
Publication year - 2019
Publication title -
journal of applied polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.575
H-Index - 166
eISSN - 1097-4628
pISSN - 0021-8995
DOI - 10.1002/app.48022
Subject(s) - thermogravimetric analysis , vinyl chloride , materials science , thermal stability , depolymerization , fourier transform infrared spectroscopy , ethylene , polyvinyl chloride , degradation (telecommunications) , chemical engineering , polymer chemistry , nuclear chemistry , organic chemistry , composite material , polymer , chemistry , catalysis , copolymer , engineering , telecommunications , computer science
The use of organic compounds as thermal stabilizers for poly(vinyl chloride) (PVC) stabilization is the current state of art worldwide owing to their high efficiency and nontoxic residues after degradation. Terephthalamide, N,N′‐dimethylterephthalamide and N,N′‐dibutylterephthalamide have been prepared via depolymerization of poly(ethylene terephthalate) through an economical and environmentally friendly approach. These compounds have been examined as thermal stabilizers for PVC formulations and found to exhibit high thermal stabilizing effects. Thermal stability measurements were performed using conventional Congo red test method. Color change experiments were conducted by heating the samples at 200 °C in air, and the colored compounds formed were extracted and compared with the help of UV–visible spectroscopy. Fourier transform infrared spectroscopic studies of organic terephthalamides incorporated PVC samples have been performed in order to insight the probable mechanistic aspects involved in thermal stabilization process. Thermogravimetric analysis (TGA) thermograms of PVC sheets loaded with 10 wt % organic terephthalamides have been recorded and were found stable below 200 °C. SEM and energy dispersive X‐ray analysis of char residues of TGA samples were performed supporting the proposed thermal stabilizing action of the organic terephthalamides. Furthermore, specific gravity and mechanical performance of the PVC sheets have also been reported assisting in finding suitable commercial applications of PVC formulations. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136 , 48022.